It's always personal: Using Early Exits for Efficient On-Device CNN Personalisation

On-device machine learning is becoming a reality thanks to the availability of powerful hardware and model compression techniques. Typically, these models are pretrained on large GPU clusters and have enough parameters to generalise across a wide variety of inputs. In this work, we observe that a much smaller, personalised model can be employed to fit a specific scenario, resulting in both higher accuracy and faster execution. Nevertheless, on-device training is extremely challenging, imposing excessive computational and memory requirements even for flagship smartphones. At the same time, on-device data availability might be limited and samples are most frequently unlabelled. To this end, we introduce PersEPhonEE, a framework that attaches early exits on the model and personalises them on-device. These allow the model to progressively bypass a larger part of the computation as more personalised data become available. Moreover, we introduce an efficient on-device algorithm that trains the early exits in a semi-supervised manner at a fraction of the whole network’s personalisation time. Results show that PersEPhonEE boosts accuracy by up to 15.9% while dropping the training cost by up to 2.2x and inference latency by 2.2-3.2x on average for the same accuracy, depending on the availability of labels on-device.

Authors: I. Leontiadis*, S. Laskaridis*, S. I. Venieris*, N. D. Lane

Published at: International Workshop on Mobile Computing Systems and Applications (HotMobile’21)_

Overview

persephonee

With PersEPhonEE, we explored how early exits can accelerate on-device personalization. We attached exits to a shared CNN backbone and personalized them locally, allowing inference to terminate earlier as the model becomes better adapted to an individual user.

We also introduced an efficient semi-supervised training strategy to reduce labeling and compute costs. The result is higher accuracy with substantially lower training and inference overhead during personalization.

Reference

@inproceedings{leontiadis2021s,
  title={It's always personal: Using early exits for efficient on-device CNN personalisation},
  author={Leontiadis, Ilias and Laskaridis, Stefanos and Venieris, Stylianos I and Lane, Nicholas D},
  booktitle={Proceedings of the 22nd International Workshop on Mobile Computing Systems and Applications},
  pages={15--21},
  year={2021}
}

© 2024. All rights reserved.

Powered by Hydejack v9.2.1