Research
For the most updated overview of my papers, please visit my scholar page.
Paper pre-prints
More coming soon.
Peer-reviewed papers
- S. Laskaridis, K. Katevas, L. Minto, H. Haddadi, “MELTing point: Mobile Evaluation of Language Transformers”, International Conference on Mobile Computing and Networking (MobiCom), 2024 [preprint]
- S. Laskaridis, S. I. Venieris, A. Kouris, R. Li, N. D. Lane, “The Future of Consumer Edge-AI Computing”, IEEE Pervasive Computing, 2024 [preprint]
- R. Lee, J. Fernandez-Marques, S. Xu, D. Li, S. Laskaridis, Ł. Dudziak, T. Hospedales, F. Huszár, N. D. Lane, “Recurrent Early Exits for Federated Learning with Heterogeneous Clients”, International Conference on Machine Learning (ICML), 2024, [paper, preprint, code]
- S. Horvath, S. Laskaridis, S. Rajput, H. Wang, “Maestro: Uncovering Low-Rank Structures via Trainable Decomposition”, International Conference on Machine Learning (ICML’24) & Workshop on Advancing Neural Network Training (WANT-AI @ NeurIPS’23), 2024 [paper, short paper,preprint, code]
- A. Kouris*, S. I. Venieris*, S. Laskaridis, N. D. Lane, “Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural Networks on Edge NPUs”, International Conference on Computer-Aided Design (ICCAD), 2023 Best Paper Award Finalist [preprint]
- L. Dudziak*, S. Laskaridis*, J. Fernandez-Marques*, “FedorAS: Federated Architecture Search under system heterogeneity”, FL-NeurIPS, 2022 [arXiv:2206.11239] [short paper, code]
- A. Kouris, S. I. Venieris*, S. Laskaridis*, N. D. Lane, “Multi-Exit Semantic Segmentation Networks”, European Conference in Computer Vision (ECCV) and International Conference on Mobile Systems, Applications and Services (MobiSys), 2022 [paper], [preprint, short paper]
- M. Almeida*, S. Laskaridis*, S. I. Venieris*, I. Leontiadis*, N. D. Lane, “DynO: Dynamic Onloading of Deep Neural Networks from Cloud to Device”, Special Issue on Accelerating AI on the Edge in Transactions of ACM Embedded Computing Systems (TECS), 2022 [paper, preprint]
- S. Horvath*, S. Laskaridis*, M. Almeida*, et al., “FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout”, Conference on Neural Information Processing Systems (NeurIPS), 2021, Spotlight (top 3%) [paper, poster, code]
- M. Almeida*, S. Laskaridis*, A. Mehrotra, et al., Smart at what cost? Characterising Mobile Deep Neural Networks in the wild, ACM Internet Measurement Conference (IMC), 2021 [paper, preprint, video]
- S. Laskaridis, D Spathis, M Almeida, Federated mobile sensing for activity recognition, International Conference on Mobile Computing and Networking (MobiCom), 2021 [paper, code]
- S. Laskaridis, A. Kouris, N. D. Lane, “Adaptive Inference through Early-Exit Networks: Design, Challenges and Directions”, International Workshop on Embedded and Mobile Deep Learning (EMDL) at MobiSys, 2021 [paper, preprint]
- I. Leontiadis*, S. Laskaridis*, S. I. Venieris*, N. D. Lane, “It’s always personal: Using Early Exits for Efficient On-Device CNN Personalisation”, International Workshop on Mobile Computing Systems and Applications (HotMobile), 2021 [paper, preprint]
- S. Laskaridis*, S. I. Venieris*, M. Almeida*, et al., “SPINN: Synergistic Progressive Inference of Neural Networks over Device and Cloud”, International Conference on Mobile Computing and Networking (MobiCom), 2020 [paper, preprint, video]
- S. Laskaridis*, S. I. Venieris*, H. Kim, N. D. Lane, “HAPI: Hardware-Aware Progressive Inference”, International Conference on Computer-Aided Design (ICCAD), 2020 [paper, preprint]
- M. Almeida*, S. Laskaridis*, I. Leontiadis*, S. Venieris*, N. D. Lane, “EmBench: Demystifying The Performance Of Deep Neural Networks Across Modern Commodity Devices”, International Workshop on Embedded and Mobile Deep Learning (EMDL) at MobiSys, 2019 [paper, preprint]
- Ł. Dudziak, M. S. Abdelfattah, R. Vipperla, S. Laskaridis, N. D. Lane, “ShrinkML: End-to-End ASR Model Compression Using Reinforcement Learning”, INTERSPEECH, 2019 [paper, preprint]
- S. Laskaridis, V. Bahyl et al., “Tape SCSI monitoring and encryption at CERN”, Journal of Physics Conference Series (JPCS), CHEP, 2016 - Work also presented in Open Compute Project - Archival storage [paper, talk]
Patents
- A. Kouris, S. I. Venieris, S. Laskaridis, I. Leontiadis, “Method and apparatus for image segmentation”, US Patent App., No. 17888138
- S. Laskaridis, S. Horvath, M. Almeida, I. Leontiadis, S. I. Venieris, “Method, system and apparatus for federated learning”, US Patent App., No.17586178
- M.Almeida, S. Laskaridis, S. I. Venieris, I. Leontiadis, “Method and system for neural network execution distribution”, US Patent App., No.17420259
- S. Laskaridis, H. Kim, S. I. Venieris, “Method and system for implementing a variable accuracy neural network”, US Patent App., No.16923447
Public Talks
- “Transformers on the Edge: Adapting Models to Diverse Systems” at Imperial College London [slides]
- “Downsizing GenAI: Running LLMs at the Edge” at FedEdge @ MobiCom’24, Washington D.C. [link]
- “Paying Attention to Efficiency: LLM Deployment on Mobile and Edge Devices” at University of Cambridge [link, slides]
- “MELTing point: Mobile Evaluation of Language Transformers”, IETF 120 PEARG Meeting [video]
- “On-Device Intelligence in the Era of Hyper-Scale Models”, University of Exeter, CS Department - PGR Workshop [slides]
- “Uncovering Low-Rank Structures via Trainable Decompositions”, 2nd MBZUAI Workshop on Collaborative Learning [video]
- “The Future of Consumer Edge-AI Computing”, FLOW Seminar [video]
- “Dandelion: Privacy-Preserving Cross-Device FL in Brave Browser”, Flower Summit 2023 [video]
- “FedorAS: Federated Architecture Search under system heterogeneity”, Flower Summit 2023 [video]
- “Embracing Diversity: Overcoming System Heterogeneity Challenges in Federated Learning”, CS Department, Aristotle University of Thessaloniki (AUTh)
- “Capturing and tackling system heterogeneity in the wild: Tales from deploying DNNs across various devices”, WIC Mid-Winter Meeting 2023 @ TU Eindhoven
- Panel co-ordinator on “Distributed Inference and Learning in the datacenter and in the wild”, DistributedML 2022 [video] - Panelists: Ana Klimovic (ETH Zurich), Marco Canini (KAUST), Dimitrios Dimitriadis (Amazon), Christos Louizos (Qualcomm AI)
- Panelist at PhD Symposium, ICDCS 2022 - Panelists: Mirco Musolesi (UCL), Giovanni Pau (University of Bologna)
- “Measuring and tackling system heterogeneity in on-device DNN deployment”, University of Avignon and FAIR Menlo Park
- “Federated Learning: Current landscape and challenges”, Federated Mobile Sensing for Activity Recognition Tutorial, MobiCom 2021 [video]
- Panel co-ordinator on “Federated Learning and Distributed Learning”, DistributedML 2021 [video] - Panelists: Vijay Janapa Reddi (Harvard University, MLCommons), Bo Li (UIUC), Mosharaf Chowdhury (University of Michigan), Tianyi Chen (RPI)
- “Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout”, FLOW Seminar [video]
- “Is the future of IoT learning Decentralised”, MobiSys 2021 IoT Day [link]
- “Federated Learning with Ordered Dropout for system heterogeneity”, Flower Summit 2021 [video]
- Panel co-ordinator on “Federated Learning and Collaborative Inference”, DistributedML 2020 [video] - Panelists: Dimitris Papailiopoulos (Wisconsin-Madison), Amanda Prorok (University of Cambridge), Fahim Kawsar (Bell Labs, TU Delft), Ilias Leontiadis (Samsung AI)
- “SPINN: Synergistic Progressive Inference of Neural Networks over Device and Cloud”, Mobicom 2021 [video]